
An Evaluation of Node-Based Delays in Tor

2014 Annual IEEE CQR International Workshop
May 13th -15th 2014

Westward Look Wyndham Grand Resort & Spa
245 E. Ina Rd Tucson, AZ 85704, USA

Timothy Girry KALE, Satoshi OHZAHATA, Wu CELIMUGE and Toshihiko KATO
 Graduate School of Information Systems,

 The University of Electro-Communications
 1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan

Contents

• Introduction
• Background of Tor network
• Router serving techniques in Tor
• Problems in Tor
• Motivation and Goals
• Experiment setups
• Tor traffic measurements
• Measurement results
• Queuing delays
• Memory usage
• Window size
• Conclusion
• Future work

2

Introduction of the Tor Network

• What is Tor ?
• Tor – The onion routing (2nd Generation)

• Focused on low-latency application such as web browsers

• System and an open network that defend against network

surveillance causes threaten to personal freedom and privacy

• Tor has been deployed to public since 2003

• 13th November 2012, there are 3,193 Routers
• 16th September 2013, there are 4,183 Routers

• 21st January 2014, there are 5,045 Routers

 3

Tor Technical Background

• Tor builds anonymous connections within 3 onion routers (relay nodes) to
relay encrypted circuit.

– Accepts fixed-length messages (512 bytes of cells) from different
sources.

– Onion Proxy (OP) presents a SOCKS proxy interface to local applications
– The client (OP) picks a OR1, and makes a TCP connection as well as the

transport layer security (TLS) on that connection.

– TCP hop-by-hop congestion control, reliability and in-order delivery of
data.

– The TLS conceals data and encrypt the segments of the circuit
connections at the application layer for the TCP transport layer.

• Tor Network consists of Volunteer-run Relays
– Volunteer have all the rights over their routers

4

How Tor Network Works

• Tor client choose same or different routes to the destination web

server

• Relay traffic through mix network (Onion routers)

5

Tor directory server

Web Server

Mix Network

Tor Client

1. Tor client
obtain a
lists of Tor
relays from
directory
server

3. Tor network is design to
multiplex multiple connection
at one relay

 Tor relay nodes
 Unencrypted link
 Encrypted link

 2. All relays periodically
contact Tor directory
servers.

Problems of Tor

• Tor doesn't work very well when relay nodes have unequal bandwidth

– Because Tor has separate service link rates between each hop

– Multiple data streams competing to send data over a TCP stream that gives
priority to circuits that send more data.

• Delays are varies for all hops

• When outgoing bytes are all dropped, the TCP push-back mechanisms don't really
transmit this information back to the incoming streams.

• Data holding up in the TCP output and input buffer for too long due to packet
drops in the Tor application layer.

6

TCP multiplexes/demultiplexes problem
• Unfair distribution of circuit queue

7

OP1

OP2

OP3

R. Pries, W. Yu, S. Graham and X. Fu, "On Performance Bottleneck of Anonymous Communication Networks," IEEE
Transactions on Networking Security, pp. 1-11, 2008.

Joel Reardon and Ian Goldberg. Improving Tor using a TCP-over-DTLS Tunnel. In Proceedings of the 18th USENIX Security
Symposium, pp. 119–133, 2009.

•Allocate TCP streams into the queue where further delay occurs
(queuing delay).

Motivation and Goals

• Our motivation comes from the most significant high and variable
delays which occur in the relay nodes. (Node based delays)
– Understanding drawbacks and sources of delay contributions in the node host

TCP stack, as a prerequisite for addressing the Tor poor congestion control and
increasing end-to-end latency.

• Our goals

– To evaluate the relative contributions of the Tor node delays
– Analyze the overall end-to-end latency experience along the

circuit (RTTs).

8

• Each packet of data in the Tor network has fixed cell
size of 512 bytes with the header and a payload.

HTTP
SOCKS

TCP
IP

TCP
IP

TLS
Circuit

Cell Auth
Stream

Gateway

• TCP/IP stack are responsible for transporting the SOCKS stream to the Tor initiator

Application Tor initiator

TCP
IP

TLS
Circuit

Intermediate

TCP
IP

TLS
Circuit

Cell Auth
Stream

Gateway

Exit

Tor

Host

Joel Reardon and Ian Goldberg. Improving Tor using a TCP-over-DTLS Tunnel. In Proceedings of
the 18th USENIX Security Symposium, pp. 119–133, 2009.

9

TLS

Circuit

TLS Output
Buffer

TCP socket
on receiving
side

TCP Buffer

TCP socket
on sending
side

 Tor Router

Queues for encryption
and decryption

Input
Buffer

TLS

Input
Buffer

Socket

TLS Output
Buffer

Socket

TCP Buffer

TCP Buffer

 Input
 Buffer Output

Buffer

Socket Socket

Input
Buffer

Label-switching routing

TCP Buffer

TLS

TCP Buffer
TCP Buffer

Socket

Input
Buffer

 Output
Buffer

Socket

Output
Buffer

TLS

Multiplexes
TCP
stack

TCP
stack Demultiplexes

Fig. 1.

IP

TCP

TLS

CIRCUIT
Label-switching routing

A
pp

lic
at

io
n

la
ye

r
TC

P/
IP

 S
ta

ck

U
ps

tr
ea

m
 R

in

D
ow

nstream
 R

out

1. Rin < Rout,
• Data comes in at the Tor

router at a rate slower
than what can be
forwarded on the
outgoing hop.

• Rout is limited by the
data rate of Rin.

2. Rin > Rout,
• Data comes in at the Tor

router at a rate faster
than the outgoing
connection

• The Tor router has to
buffer the excess data.

• Once the buffers are full,
the incoming connection
has to throttle back

Input buffer Output buffer

• The incoming and outgoing rates are generally unequal because of data queue at the
Transport TCP level and Application level

11

TCP buffer on the
receiver side

TCP buffer on the
sender side

𝑆𝑖,𝑗𝑂𝑂𝑂

𝑁𝑚𝑚𝑚
𝐼𝐼 𝑁𝑚𝑚𝑚

𝑂𝑂𝑂

𝑁3𝐼𝐼

𝑁2𝐼𝐼
𝑁1𝐼𝐼

𝑁2𝑂𝑂𝑂

𝑁1𝑂𝑂𝑂

𝑆𝑖,𝑗𝐼𝐼

Research focuses

• Node based delays
– We analyze the problems contributing to increase the delays in the host TCP stack

buffers, which affects the total end-to-end delay in Tor.

– Data is read from a TCP receiving connections and placed on TCP input socket
buffer before transfer to the application layer.

– Data is read from an application layer and placed on a TCP output socket buffer

before transfer to other relay node.

– Our enquiry is focused on the transfer time from the TCP receiving side to
sending side of a relay node.

• The delays includes the TCP level and the Application level

• We discussed the TCP kernels receive and send buffers can increase the node based

delays, when packets are holding up for too long and not quickly transferred.

• We showed that this problem has a direct impact to TCP window sizes, which the

receiving nodes cannot accept more newly incoming cells.

Proposed Analysis

• We are evaluating

• Identify the node based delays (ND)constitute the major performance
bottleneck on TCP connections.

• The overloaded links (Total end-to-end delay RTTs) and (RTT between
routers)

• Total Propagation delays - time spent by packets on a link between
neighboring Tor routers.

13

• These metrics dominates the node based delays:

• TCP stack input/output queuing delays
• TCP kernel memory usage and
• TCP window size limitations.

Fig. 2. Node based delay measurements

Client

𝑡1

𝑡4

 TCP Ping SYN message - RTTs are measured by the first bytes sends from client 𝑡1, passing
through middle router (processing/queuing delays) before reaching the exit router, which
𝑡2is recorded. 𝑡3is recorded as soon as bytes writes on the socket of exit relays, and
packets passes through middle router and arrives at the client, then 𝑡4 is recorded.

 Total RTT delay (TD)= (𝑡4 - 𝑡1) – (𝑡3 - 𝑡1)
 𝑅𝑅𝑅𝑚+𝑏 = 𝑅𝑅𝑅𝑚 + 𝑅𝑅𝑅𝑏 (Delays exit between OP <-> EN and EN <-> EN)
 Node delay = TD – 𝑅𝑅𝑅𝑚+𝑏 (Delay between the TCP input and the TCP output)

- This procedure is repeated for 2,567 routers in the entry position, chosen one-by-one at

random from the current list of running routers in Tor.
- Each node is measured 10 repeated times after 5 minutes
- Note: Since entry nodes are in the Tor network, it can accommodate other traffics

𝑅𝑅𝑅𝑚 𝑅𝑅𝑅𝑏
Web server

14

Entry node
(Locate in the Public Tor)

Exit node

𝑡2

𝑡3

• This measurement approach is good because it can give the realistic network situation
and the propagation distance.

• Direct approach measurement and periodically probe the isolated rates on each hop
by performing a data transfer.

• Tor auto-circuit and nodemonitor tools

– To control circuit length, speed, geolocation, and other parameters.

– To capture the incoming and outgoing transfer rates at the TCP level

• Little’s theorem helps us to identify the queuing delays at the TCP input and the output
buffers.

– Average node based delay is calculated by the little theorem

𝑅𝑡 =
∑ 𝑅𝑖
𝛼(𝑡)
𝑖=0
𝛼(𝑡)

15

Table I. Average Delays measured between nodes and in the nodes, with
95% confidence interval.

16

• The total propagation delays from OP to exit node and the 𝑅𝑅𝑅𝑚+𝑏 are relatively lower
compare to node delays (ND).

• This is because of the increasing queuing and processing delays of cells of overall node based

delay, which includes queuing delay at the TCP stack buffers and buffers in the Tor router.

• Packets queuing in multiple buffers increases the node delay (ND) and the overall TD.

• The increase of TD along the circuit is heavily influenced by the delays in the node (ND).

Fig. 4. CDF of node based delays between the TCP input and output connections for (a) entry
nodes and (b) exit node.

• We observe that increasing delays between selected nodes and the client causes the
instability, and variance of RTTs delays along the circuit, due to delays occurs on nodes

 Data path Latency for 2 hop circuit = Total RTT delay (TD)= (𝑡4 - 𝑡1) – (𝑡3 - 𝑡1)
 - Average Total latency experience by the packets in full round trip is 2.73 ± 0.08 sec

 Node delays (TD –𝑅𝑅𝑅𝑚+𝑏)
 - 50% of all sets of public entry nodes 1,567 have delays less than 2 seconds in average.
 - 50% of delays experienced for different circuits have delays less than 1.72 seconds.

17

(a) Entry nodes (b) Exit node

Fig. 5. CDF of TCP stack (a) input and (b) output queue delays. Both results are
measured directly at the exit host node when download a 6.3 MB file.

18

(a) input (b) output

• The TCP input and output queuing delays are directly measured by capturing the traffic rates
passed through the TCP stack.

• 50% of TCP input queues are less than 0.9 seconds and 50% of TCP output queues are less
than 1.64 seconds.

• The average CPU usage measured at the exit node when downloaded the file is 2%.
• We stated that the CPU utilization does not affect the delays in the node, since the average

CPU usage is very low.

19

Client Middle
node

Exit
node

Web
server

- Run our entry and exit relay.
- Both relays runs on Ubuntu 13.10 CPU 2.60 GHz 64 bit with 8 GB of RAM,

respectively
- Proper care was taken to observe any significant components that could

increase the node based delays
- The experiment was performed 10 times using randomly selected ORs for

middle hop
- The allocated bandwidth on both entry and exit relays is greater than 2.5 MB.

Entry
node

Fig. 3. Second experiment setup. The measurement circuit traffic is from the webserver to client
OP during download of 339 MB file.

• TCP Kernel memory usage in nodes
• Affects the TCP window size

Analysis

• We analyzed the sources of node based delays in the TCP stack on
two cases;

– First case is, if the spreading of TCP input and output buffers in the node can

exhaust all the TCP kernel buffers.

– Second case, if the results in the exit node in terms of exhausting all kernel
paged memory usage and window sizes, can also affects the neighboring
entry node in the same circuit.

20

TCP kernel buffers

21

TCP kernel memory usages at the entry and exit relay nodes. The kernel buffer pools monitored
is for a single circuit built through entry and exit relay nodes.

• The risk to these allocated kernel memory buffers is when multiple circuits are multiplexed
over the same TCP connection.

• The sending paged pools accommodating the copied cells from the TCP output buffers can
easily running out of memory space, when both entry and exit nodes are accommodating
larger circuit streams.

Kernel Memory Physical Memory
Relay
nodes

TCP kernel
receive

buffer size

TCP kernel
send

buffer size

Non
paged

RAM in
used

RAM
available

Entry 68 KB 28 KB 5.2 MB 1.9 GB 6.1 GB
Exit 63 KB 26 KB 4 MB 1.7 GB 6.3 GB

Table II.

Default buffer sizes allocated by Operating System
TCP receive buffer TCP send buffer

6291456 Bytes – Max_Th 4194304 Bytes – Max_Th

87380 Bytes – Average Buffer size 16384 Bytes – Average Buffer Size

4096 Bytes – Min_Th 4096 Bytes – Min_Th

First Case:
• When many cells are arriving out of order, the TCP stack can puts more pressure on the

kernel buffers to start reducing the memory usage for all pools.
 Could result in buffer overflowing, memory exhaustion and TCP socket un-writable
 Unnecessary delays occurs due to larger TCP input and output queues

Second Case:
• Increase TCP kernel buffer usage can affects the entry and exit nodes during the

download performance, interms of read/write data faster on the corresponding TCP
connections.

• Average processing rates [TCP Throughput] on entry and exit node

 Entry node – TCP input rate is 95 KB/s and the TCP output rate is 65 KB/s.
 Exit node - TCP input rate is 85 KB/s and the TCP output rate is 55 KB/s.

Unreliable TCP throughput degradation and must buffer up the packet to one
full TCP window sizes. This situation leads to increasing TCP buffer length in
all nodes.

Fig. 6. CDF of buffer queue length at the entry and exit node when
download a 339 MB file.

23

• Effects of TCP kernel send buffers for both entry and exit nodes that increase in buffer
length ratio.

• 50% of the circuit we measured at the entry node has 9 KB of TCP sending buffer length
and, exit node has 10.8 KB of buffer length.

• This scenario depicted a risk condition of TCP kernel buffers at the TCP hosts for both entry
and exit that never goes empty, which contributed to increase the node based delay.

TCP window size

24

Fig. 7. Measurement base on node inability to read more data at the (a) entry node and (b) exit
node when download 339 MB file.

(a) entry (b) exit node

• Increasing TCP queuing buffers can reduce TCP advertised window on Tor nodes for not
receiving more data, especially when the allocated TCP receive buffers runs out of space.

• The advertised window at the entry node gradually increases till it stays on the 35 KB, and
further increase to 40 KB. At the exit node, the advertised window increases from 37 KB at
the time of measurement and stays at 42 KB.

 Conclusion

• The variance of TCP window sizes between the entry and the exit node result in
the invocation of TCP flow control based on inability to read more data. TCP
input/output buffer are full.

• The buffers are swell in the TCP Input buffer
– TCP buffer is full
– TCP sending buffer does not write the packets on the circuit
– Setting of the OS

• Tor’s congestion control in application layer does not always keep a steady flow

of cells in flight between routers and transport upstream and downstream flow.

• We observed that average CPU utilization in the Tor routers does not affects the

node based delays, since the usage is lower

• Variances of the total round trip delays (TD) have great influence from the
delays in the nodes.

25

Future Work

• There is need for proper implementing of congestion control in Tor.
This would minimizes the longer circuit queuing and improve the TCP
advertised window sizes.

• Improve the transmission between the Tor application layer and the
TCP buffers would reduce the queuing delays of cells.

• Restrict the number of circuits based on selected nodes
– Control by the buffer size usages.

26

Thank you for listening

Questions & Answers

27

• Delays in the application layer:

– Tor router can spends most of its time executing AES operations
during cell processing.

– The additional use of TLS to encrypt outgoing traffic between
nodes will increase the overhead.

AES Operations

Reads 30 microsec

Write 40 microsec

Per TLS Link
(En/Decryption)

70 microsec

6 TLS Link
(En/Decryption)

420 microsec (a cell to travel up the
path and another cell to be returned
in reply).

Expected computational latency
along a circuit is

540 microsec for a full trip.

Joel Reardon, and Ian Goldberg. Improving Tor using a TCP-over-DTLS Tunnel. USENIX Security
Symposium, page 119-134. USENIX Association, (2009)

Related Studies
• Congestion-aware Path Selection for Tor. Each client maintains a congestion list of all

known relays paired with a number of congestion times for each relay.

 Instant Response of relays to switching to another circuit.
Wang, T., Bauer, K., Forero, C., Goldberg, I.: Congestion-aware Path Selection for Tor. In Proceedings of Financial Cryptography and Data
Security (FC’12) (February 2012.

• Torchestra", Reducing Interactive Traffic Delays over Tor. Create two separate connections
between each pair of nodes: one for interactive traffic, and one for bulk traffic.

Gopal, D., Heninger, N.: Torchestra: Reducing Interactive Traffic Delays over Tor. In: Proceedings of the 2012 ACM Workshop on Privacy in the
Electronic Society. pp. 31–42. WPES ’12, ACM, New York, NY, USA (2012)

• The Exponentially Weighted Moving Average (EWMA) is a statistic used to calculate the
moving average while giving more weight to recent data

C. Tang and I. Goldberg. An improved algorithm for Tor circuit scheduling. In proceedings of the 17th ACM conference on Computer and
communications security , pages 329{339. ACM, 2010

• Throttling Tor Bandwidth Parasites
Jansen, R., Syverson, P., Hopper, N.: Throttling Tor Bandwidth Parasites. In: Proceedings of the 21st USENIX Security Symposium (August
2012)

29

One hop TCP RTT delays from the client to the entry relays, and from
exit to the entry relays

• TCP Ping SYN from the Exit
and entry relay to the
middle relays are relatively
small, due to one hop
measurements.

• 50% relays have RTT delays
less than 0.3 seconds.

• Delays occurs in full round
trip TD should be larger
due to additional delays in
the TLS with the increasing
processing delays in the
nodes.

30

Experiment Results

One-hop (multiplex circuits)
• TCP Throughput for circuit 1,2,3,4 @ 1 hop - 75.4 KB/s, 145 KB/s, 64 KB/s, 120 KB/s

• The duration of time to download is taken from the start time of read time till the last
write time. The file download is 23.6 MB

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10TC
P

Th
ro

ug
hp

ut
 fr

om
 r

ec
ei

vi
ng

 t
o

se
nd

in
g

si
de

s

Measurement #

Circuit 1 Circuit 2 Circuit 3 Circuit 4

31

TCP receive buffer TCP send buffer

6291456 Bytes – Max_Th 4194304 Bytes – Max_Th

87380 Bytes 16384 Bytes

4096 Bytes – Min_Th 4096 Bytes – Min_Th

Two-hops (multiplex circuits)

• TCP throughput for Entry node Circuit 1,2,3,4 – 85.1 KB/s, 100 KB/s, 109 KB/s, 94 KB/s

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

TC
P

Th
ro

ug
hp

ut
 fr

om
 r

ec
ei

vi
ng

 t
o

se
nd

in
g

si
de

s

[K
B/

s]

Measurement #

Circuit 1 Circuit 2

Circuit 3 Circuit 4

32

• Avg. TCP throughput for Exit node C1,2,3,4 – 85.6 KB/s, 65 KB/s, 116 KB/s, 94
KB/s

0
50

100
150
200
250
300
350

1 2 3 4 5 6 7 8 9 10

TC
P

Th
ro

ug
hp

ut
 fr

om
 re

ce
iv

in
g

to
 s

en
di

ng
 s

id
es

[K

B/
s]

Measurement #

Circuit 1 Circuit 2

Circuit 3 Circuit 4

33

	An Evaluation of Node-Based Delays in Tor
	Contents
	Introduction of the Tor Network
	Tor Technical Background
	How Tor Network Works
	Problems of Tor
	TCP multiplexes/demultiplexes problem
	Motivation and Goals
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Research focuses
	Proposed Analysis
	Fig. 2. Node based delay measurements
	Slide Number 15
	Table I. Average Delays measured between nodes and in the nodes, with 95% confidence interval.
	Fig. 4. CDF of node based delays between the TCP input and output connections for (a) entry nodes and (b) exit node.
	Fig. 5. CDF of TCP stack (a) input and (b) output queue delays. Both results are measured directly at the exit host node when download a 6.3 MB file.
	Slide Number 19
	Analysis
	TCP kernel buffers
	Default buffer sizes allocated by Operating System
	��Fig. 6. CDF of buffer queue length at the entry and exit node when download a 339 MB file.��
	TCP window size
	Slide Number 25
	Future Work
	Thank you for listening
	Slide Number 28
	Related Studies
	One hop TCP RTT delays from the client to the entry relays, and from exit to the entry relays
	One-hop (multiplex circuits)
	Two-hops (multiplex circuits)
	Slide Number 33

