Vulnerabilities and Opportunities in SDN, NFV, and NGSON

IEEE CQR 2014 International Workshop
Emerging Technology Reliability Roundtable
Tucson, Arizona, USA
May 12, 2014

Mehmet Ulema
Manhattan College, New York, USA
Outline

• Overview of emerging technologies and trends in networking and services
 – SDN, NFV, NGSON
• RAS related issues in SDN and OpenFlow
• Designing and building secure platforms with automatic failure recovery and fault tolerant features, self organizing capabilities
• Vulnerabilities observed in the design and implementation of NFV
• NGSONs built in RAS features
• Conclusion
Emerging Trends and Technologies in Networking and Services

- Virtualization
- “Softwarization”
- Commoditization
- Service Chaining
- Dynamic Adaptation
- Context Awareness
- Self Organization

- SDN
- NFV
- NGSON
-
Software Defined Networks / Networking

- Network control plane is decoupled from forwarding and is directly programmable
 - Programmability: enabled through **Controller**, executed through **Forwarding** elements
 - Allows network operators to customize and optimize
 - delivery of new types of network services, new business models, products & services
 - reduce CAPEX and OPEX

Focus on network paths and flows for Big Data, Composed Services, etc.

- SDN Controller
- (Programming FlowTables)
- SDN Forwarding Elements

OpenFlow

- An API that controls how packets are forwarded
- Implementable on COTS hardware
- Make deployed networks programmable
 - Not just configurable

A new class of networking products!
OpenFlow Application: Network Slicing

• Divide the network into logical slices
 – A slice: a collection of switches/routers
 – Each slice/service controls its own packet forwarding
 ➢ Existing services run in their own slice
 ○ E.g., Spanning tree, OSPF/BGP

• Data plane is unmodified
 – Packets forwarded with no performance penalty
 – Slicing with existing ASIC

• Transparent slicing layer
 – Enforce strong isolation between slices
 ➢ Actions in one slice do not affect another

• Prototype implementation: FlowVisor
A Broader Vision: Software Defined Ecosystem
SDN concept generalized and applied to all segments of networking with modularity (e.g., User Equipment, Radio, Transport, Operations, Applications), all areas of technology (e.g., wireless, optical), and abstractions that allow management, cloud, cognitive, smart grid, etc.
Network Functions Virtualization (NFV) or Profit Realization (PR)?

• Use standard IT virtualization technology to consolidate many network equipment types onto industry standard high volume servers, switches and storage,

• Implement network functions in software that can run on industry standard servers,
 – that can be moved to various locations, without the installation of new equipment

• Five basic principles of NFV:
 – Orchestrate distributed data centers, manage application lifecycles, leverage the network, automate cloud "nodes," and be open and multi-vendor

Source: ETSI NFV ISG’s – Introduction White Paper, October 2012
NFV: Reference Architectures
What about Service Functions Virtualization? Next Generation Service Overlay Network (NGSON)

- An IEEE standard for a framework of IP-based service overlay networks
- A set of context-aware, dynamically adaptive, and self-organizing networking capabilities, including advanced routing and forwarding schemes to support applications

NGSON focuses on the services, service chains, collaboration of services by networking servers/systems used for providing/supporting services.
X-Aware Service Ecosystem

AS, Apps, ...
CPE, Mobile Handset, ...
IM, LBS, Social N/Ws, ...

Application/Service Awareness
Device Awareness
User Awareness

NGSON

Application Awareness
Network Awareness

Software Defined Network (SDN)
Telecom N/Ws (NGN, IMS, EPC)
Other N/Ws (Web, P2P, IT)
A Deployment View of NGSON

Service Functions includes but are not limited to:
A. Autonomic networking features
B. Dynamic policy enforcement capabilities
C. Service Interaction facilitation functions
D. Service Addressing
E. Service Discovery
F. Context aware Routing
• NGSON network operators to reduce OPEX of NGSON networks based on self-organizing management capabilities of NGSON including self-configuration, self-recovery and self-optimization of NGSON nodes and functional entities
Self-Organization Aspects - Built-in

• Self Organization
 – Self Healing (a.k.a., Self Recovery)
 – Self Optimization for performance reasons
 – Self Configuration – typically triggered by self healing or self optimization such as load balancing

• “Self-Configuration” Operations Examples
 – ADD NGSON FE
 – DELETE NGSON FE
 – MOVE NGSON FE
 – COPY NGSON FE
 – ACTIVATE NGSON NODE
 – DEACTIVATE NGSON NODE

Large Scale Deployment (Cloud)
Automated Management
Virtualized NGSON Functions
Decoupling Hardware and Software
RAS Concerns in SDN and OpenFlow

• SDN raises serious performance, scalability, reliability, and security concerns

• Centralized or distribute, the control plane is troublesome:
 – Reliability - bottleneck
 – Performance - bottleneck
 – Scalability - placement, connections, etc.

• Secure in OpenFlow based networks is an active research area:
 – Control channel between the controller and switches: TLS optional
 – This leads to a number of vulnerabilities (e.g., Listener Mode)
 – Even with TLS implemented, there are still several concerns
• Logically-centralized controller must be physically distributed
 – This will help to increase scalability, reliability and availability
 – But, it raises new challenges:
 ➢ Staleness versus optimality; application logic complexity versus robustness to inconsistency
 ➢ Controller placement problem
 o How many and where?
 o How to assign switches dynamically to controllers: based on controllers’ load estimates?
 o How to handover switches from one controller to another dynamically (when needed)?

Performance of OpenFlow Networks

- Hard to predict because:
 - OpenFlow is different:
 - Control plane performance + data plane performance
 - Performance variations of equipment used in different vendor equipment
 - Each vendor has a different OpenFlow switch:
 - Flow table size, flow management policies, switching hardware resources

- Key performance metrics associated with an SDN controller:
 - Flow set-up time, and
 - Number of flows per second that the controller can setup

- Factors that play key role:
 - Processing power of the switch
 - Processing and I/O performance of the controller
 - Reactive vs proactive setting up the flows

- Need new tools, new emulation software to predict SDN performance
Threat Vectors of SDNs

Vulnerabilities Observed in OpenFlow

• Control channel between the controller and switches:
 – OpenFlow protocol runs over TPC with TLS being optional!!!
 ➢ TLS requires multiple certifications → difficult, thus ignored by many vendors
 ➢ → an avenue for adversaries to infiltrate OpenFlow networks and remain largely undetected

• Even with TLS implemented, there are still several concerns:
 – Switch authentication - if ignored, attacker can observe controller response
 – Flow Table Verification - detect switches that erroneously alter rule
 – Denial of Service Risks, - higher with the centralized control
 – Controller Vulnerability - OpenFlow apps performing deep packet inspection on the host responsible for the control of the whole network

Vulnerabilities Observed for OpenFlow Apps

• The open interface between the controller and applications and the involvement of multiple parties is another big concern (control layer attack)
 – A survey suggest that all state-of-the-art OpenFlow platforms expose the full privilege of OpenFlow indiscriminately to every app without protection

• A possible solution
 – Use a permission system that incorporates a customized permission set and a thread-based isolation mechanism to enforce least privilege on the level of OpenFlow apps

• Creating secure networks using OpenFlow is an active research area
 – Some examples: FRESCO, FortNOX, FlowVisor

Other Security Concerns for SDN Networks

• Ability to support enterprise class authentication and authorization of the administrators of the network
• Ability to lock down access to SDN control traffic
• Ability to apply sophisticated filters to packets
• Ability to ensure that each tenant that is sharing the infrastructure has complete isolation from all of the other tenants
• Ability to both rate-limit the control communications, and to be able to alert the network administrators when the network is experiencing a suspected attack
Reliability-aware Controller Placement for SDNs

- SDN decouples control and forwarding planes
 - Such separation introduces reliability design issues of the SDN control network, since disconnection between the control and forwarding planes may lead to severe packet loss and performance degradation

- A solution lies in placing controllers in SDNs in such a way, so as to maximize the reliability of control networks
 - Placement algorithms?

- Need a metric to characterize the reliability of SDN control networks

Increasing the Network Reliability by Controller

• Alternative 1: A single path from source to destination,
 – When a link fails, the controller must be capable of rerouting the traffic onto one of the other operational links
 ➢ Controller must monitor the network topology in real time
 ➢ Computation of the new forwarding state (in response to a failure) takes place at the controller
 o Requires an extra SW logic at the controller; if modular architecture, then each module needs its own logic → difficult to develop, error prone

• Alternative 2: Incorporate into the controller the ability to discover and sets multiple paths from source to the destination.
 – If a single link on a path fails, there are other paths that can be used to route the packet
Increasing the Availability of the Controller

• Redundancy
 – With both hardware and software redundancy features

• Clustering
 – 2 SDN controllers increases reliability (one active, another in hot standby)
 – 3 or more SDN controllers increases the availability, performance and scalability (one in hot standby)
 ➢ Important: maintaining the synchronization of the memory between the active and standby controllers
NFV Requires Redefined Telecom Resiliency

• The traditional telecom reliability:
 – 99.999% reliable → Hardware fails an average of 3-5 minutes per year
 – Traditional, purpose-built telecom hardware to meet this standard

• The shift to SDN and NFV → use of commercial off-the-shelf (COTS), commodity hardware
 – Expect failures all the time at the hardware layer
 – Are service providers willing to accept the reduction in reliability?

• Need to design services differently and measure service uptime, instead
 – Service downtime vs hardware downtime – need to build resilient software

• Virtualization will require different tools to address trouble alerts, root cause analysis, and recovery
 – It is a virtual network, the elements that make up a service will in many different places
 – Detecting trouble won’t be as simple as observing a red light
Recent Standardization Activities

• IEEE ComSoc Study Group
 – On April 25, 2014, IEEE ComSoc Standardization Activities Council, after a one-day working meeting of experts, concluded to form a Study Group on the Reliability and Security of the Software Defined Ecosystem
 – The group will perform a gap analysis and recommend an action toward formation of IEEE project Working Group to work on and produce IEEE standards in this area
 – Ultimate objective is to create standardized reliability and security related specifications for a broad vision of software defined ecosystem

• "Reliability and Availability" WG of ETSI ISG NFV chartered
 – On January 17, 2014, the "Reliability and Availability" WG within ETSI's Industry Specification Group on "Network Function Virtualization" was chartered
 – The group will provide resilience guidelines for the general NFV architecture and the software functions
 – Moreover, the WG will provide engineering guidelines and methodology for high-resilience systems built from low-reliable components
Conclusion

To Fulfill the Promise of Service Convergence in Emerging Technology based Networks

The industry needs, immediately, a set of reliability metrics and terminology that are common across the network for which individual service availability requirements can be specified.
Backup Slides
Toward Commoditization

Computer Industry

Virtualization layer

App

Windows (OS)

Linux

Mac OS

x86
(Computer)

Network Industry

Virtualization or “Slicing”

App

NOX
(Network OS)

Network OS

OpenFlow
A General Framework for the Broad Vision of SDN

Can be instantiated and used recursively for a variety of environments including SD-A, SD-RAN, SDN, SDN-SP, NFV, NGSON, Cloud, etc.

- **Applications/Functions**: Cross Layer Controls
- **Virtualization**: Operating System (OS)
- **Hardware**: Cross Layer Controls

By pass mechanisms to different layers required for fine grained control

North Bound Interface/South Bound Interface: Business applications, Interworking with other SDNs like Controller – Controller, OS-OS, Orchestration, Cross Layer

Applications, Orchestration functions, or Algorithms for a scenario to be controlled. Initiates the control signals to the Programmable functions (e.g. Congestion Control, Service Routing, Self Organization). Specification of Controls for programmable functions (e.g., Rules, Program Languages). Exposed as APIs for Apps to code

Virtualization of the functions for business policy control (e.g., Choose controller, allow control execution, single point access). Critical functions execution designed for programmability (e.g., Flow Table, VM Configuration, Service Routing table)

Operating system should support programmable control functions with real time characteristics. Provide Services abstraction and support Northbound/Southbound APIs

Commodity Hardware capable of operating on any layer like Radio, Network, Services, etc., which can provide real time characteristics
ETSI NFV Industry Specification Group’s Vision

Classical Network Appliance Approach

- Message Router
- CDN
- Session Border Controller
- WAN Acceleration
- DPI
- Firewall
- Carrier Grade NAT
- Tester/QoE monitor
- SGSN/GGSN
- PE Router
- BRAS
- Radio/Fixed Access Network Nodes

- Fragmented non-commodity hardware.
- Physical install per appliance per site.
- Hardware development large barrier to entry for new vendors, constraining innovation & competition.

Independent Software Vendors

- Orchestrated, automatic & remote install.

Standard High Volume Servers

Standard High Volume Storage

Network Functions Virtualisation Approach

MANHATTAN COLLEGE
Position of NGSON Standards

- IMS/NGN: focus on the underlying infrastructure and networking technologies to facilitate services
- Others: focus on different aspects (e.g., SDP has service delivery oriented purpose, centralized architecture)